Saturday, February 9, 2019

How Maglev Train Runs over the track ???

A few countries are using powerful electromagnets to develop high-speed trains, called maglev trains. Maglev is short for magnetic levitation, which means that these trains will float over a guideway using the basic principles of magnets to replace the old steel wheel and track trains. In this article, you will learn how electromagnetic propulsion works, how three specific types of maglev trains work and where you can ride one of these trains.

A brief review of magnets will help explain how maglev (magnetic levitation) trains work. Every magnet has a north pole and a south pole. Similar poles of two magnets repel each other; opposite poles attract each other. These principles govern the levitation of maglev trains.
Permanent magnets are always magnetic. Electromagnets are magnetic only when an electric current flows through them. The north and south poles of an electromagnet are related to the direction of the current. If the direction of the current is reversed, the poles are reversed.

In maglevs that levitate by magnetic repulsion, the train lies over the guideway. Magnets on top of the guideway are oriented to repel similar poles of magnets in the bottom of the maglev. This pushes the train upward into a hovering position. This system is designed for maglevs that contain groups of extremely powerful superconducting electromagnets. These magnets use less electricity than conventional electromagnets, but they must be cooled to very low temperatures—from −269 degrees Celsius to −196 degrees Celsius.
In maglevs that levitate by magnetic attraction, the bottom of the train wraps around the guideway. Levitation magnets on the underside of the guideway are positioned to attract the opposite poles of magnets on the wraparound section of the maglev. This raises the train off the track. The magnets in the guideway attract the wraparound section only strongly enough to raise the train a few centimeters into a “floating” position. The wraparound section does not touch the guideway. (Imagine a C-shaped bracelet floating around your wrist without touching it.)

No comments:

Post a Comment